首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55248篇
  免费   9274篇
  国内免费   6601篇
化学   39061篇
晶体学   609篇
力学   3436篇
综合类   541篇
数学   6771篇
物理学   20705篇
  2024年   43篇
  2023年   1050篇
  2022年   1133篇
  2021年   1800篇
  2020年   2194篇
  2019年   2080篇
  2018年   1791篇
  2017年   1685篇
  2016年   2467篇
  2015年   2499篇
  2014年   3102篇
  2013年   3947篇
  2012年   4941篇
  2011年   5103篇
  2010年   3553篇
  2009年   3451篇
  2008年   3703篇
  2007年   3268篇
  2006年   3074篇
  2005年   2578篇
  2004年   2166篇
  2003年   1648篇
  2002年   1578篇
  2001年   1323篇
  2000年   1152篇
  1999年   1227篇
  1998年   1010篇
  1997年   929篇
  1996年   937篇
  1995年   816篇
  1994年   757篇
  1993年   614篇
  1992年   543篇
  1991年   484篇
  1990年   420篇
  1989年   305篇
  1988年   284篇
  1987年   257篇
  1986年   181篇
  1985年   184篇
  1984年   161篇
  1983年   143篇
  1982年   104篇
  1981年   76篇
  1980年   63篇
  1979年   38篇
  1978年   27篇
  1976年   33篇
  1975年   39篇
  1974年   25篇
排序方式: 共有10000条查询结果,搜索用时 581 毫秒
31.
In this research article, we describe the synthesis and characterization of mononuclear and dinuclear Cu complexes bound by a family of tridentate redox-active ligands with tunable H-bonding donors. The mononuclear Cu-anion complexes were oxidized to the corresponding “high-valent” intermediates by oxidation of the redox-active ligand. These species were capable of oxidizing phenols with weak O−H bonds via H-atom abstraction. Thermodynamic analysis of the H-atom abstractions, which included reduction potential measurements, pKa determination and kinetic studies, revealed that modification of the anion coordinated to the Cu and changes in the H-bonding donor did not lead to major differences in the reactivity of the “high-valent” CuY complexes (Y: hydroxide, phenolate and acetate), which indicated that the tridentate ligand scaffold acts as the H+ and e acceptor.  相似文献   
32.
Dendrite formation is a major obstacle, e.g., capacity loss and short circuit, to the next-generation high-energy-density lithium (Li)-metal batteries. The development of successful Li dendrite mitigation strategies is impeded by an insufficient understanding in Li dendrite growth mechanisms. The Li-plating-induced internal stress in Li-metal and its effects on dendrite growth have been widely studied, but the underlying microcosmic mechanism is elusive. In the present study, the role of the plating-induced stress in dendrite formation is analyzed through first-principles calculations and ab initio molecular dynamic (AIMD) simulations. It is shown that the deposited Li forms a stable atomic nanofilm structure on the copper (Cu) substrate, and the adsorption energy of Li atoms increases from the Li-Cu interface to the deposited Li surface, leading to more aggregated Li atoms at the interface. Compared with the pristine Li-metal, the deposited Li in the early stage becomes compacted and suffers the in-plane compressive stress. Interestingly, there is a giant strain gradient distribution from the Li-Cu interface to the deposited Li surface, making the deposited atoms adjacent to the Cu surface tend to press upwards with perturbation and causing the dendrite growth. This provides an insight into the atomicscale origin of Li dendrite growth, and may be useful for suppressing the Li dendrite in Li-metal-based rechargeable batteries.  相似文献   
33.
34.
By tuning the length and rigidity of the spacer of bis(biurea) ligands L, three structural motifs of the A2L3 complexes (A represents anion, here orthophosphate PO43?), namely helicate, mesocate, and mono‐bridged motif, have been assembled by coordination of the ligand to phosphate anion. Crystal structure analysis indicated that in the three complexes, each of the phosphate ions is coordinated by twelve hydrogen bonds from six surrounding urea groups. The anion coordination properties in solution have also been studied. The results further demonstrate the coordination behavior of phosphate ion, which shows strong tendency for coordination saturation and geometrical preference, thus allowing for the assembly of novel anion coordination‐based structures as in transition‐metal complexes.  相似文献   
35.
The Insight-Hard X-ray Modulation Telescope(Insight-HXMT) is a broadband X-ray and γ-ray(1-3000 ke V) astronomy satellite. One of its three main telescopes is the High Energy X-ray telescope(HE). The main detector plane of HE comprises 18 Na I(Tl)/Cs I(Na) phoswich detectors, where Na I(Tl) is used as the primary detector to measure ~ 20-250 ke V photons incident from the field of view(FOV) defined by collimators, and Cs I(Na) is used as the active shielding detector to Na I(Tl) by pulse shape discrimination. Additionally, Cs I(Na) is used as an omnidirectional γ-ray monitor. The HE collimators have a diverse FOV,i.e. 1.1°×5.7°(15 units), 5.7°×5.7°(2 units), and blocked(1 unit). Therefore, the combined FOV of HE is approximately5.7°×5.7°. Each HE detector has a diameter of 190 mm resulting in a total geometrical area of approximately 5100 cm2, and the energy resolution is ~15% at 60 ke V. For each recorded X-ray event by HE, the timing accuracy is less than 10 μs and the deadtime is less than 10 μs. HE is used for observing spectra and temporal variability of X-ray sources in the 20-250 ke V band either by pointing observations for known sources or scanning observations to unveil new sources. Additionally, HE is used for monitoring the γ-ray burst in 0.2-3 Me V band. This paper not only presents the design and performance of HE instruments but also reports results of the on-ground calibration experiments.  相似文献   
36.
In the view of substrate availability, atomic efficiency and cost, directly using arenols as coupling partners in cross‐coupling, would be one of the most attractive goals. Up to date, many efforts have been made to activate the C—O bond of phenols with different strategies, for example, through in‐situ formed intermediates, through a catalytic reductive dearomatization‐condensation‐rearomatization sequence or catalytic deoxygenation. In this review, we summarized recent advances in cross‐couplings of arenols as the electrophiles via C—O activation.  相似文献   
37.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   
38.
Recently,the nested Mach–Zehnder interferometer[Phys.Rev.Lett.111,240402(2013)]was modified by adding Dove prisms in a paper[Quantum Stud.:Math.Found.2,255(2015)],and an interesting result is that,after the Dove prisms were inserted,a signal at the first mirror of the nested interferometer was obtained.But,according to the former original paper,the photons have never been present near that mirror.In this work,we interpret this result naturally by resorting to the three-path interference method.Moreover,we find that even though the photons have been somewhere,they can hide the trace of being there.  相似文献   
39.
Photoactivated chemotherapy (PACT) has appealing merits over traditional chemotherapy as well as photodynamic therapy (PDT) by virtue of its spatial and temporal control on drug activity and oxygen-independent mechanisms of action. However, the short photoactivation wavelengths, e.g., visible light–activated Ru(II)-based PACT agents, limit the clinical application severely. In this work, a facile construction of supramolecular nanoparticles from a poly(ethylene glycol) (PEG)-modified [Ru(dip)2(py-SO3)]+ (abbreviated as Ru-PEG, dip = 4,7-diphenyl-1,10-phenanthroline, py-SO3 = pyridine-2-sulfonate) and 1,3-phenylenebis(pyren-1-ylmethanone) (BP) is shown. While Ru-PEG may undergo photoinduced ligand dissociation and release anticancer species of [Ru(dip)2(H2O)2]2+, BP has extremely large two-photon absorption cross sections (δ2) in the NIR region and intense fluorescence over the wavelengths where Ru-PEG has strong absorption. Thus, two-photon excitation of BP followed by an efficient Förster resonance energy transfer (FRET) from BP to Ru-PEG may lead to a potent inactivation against cisplatin-resistant cancer cells and 3D multicellular tumor spheroids (MCTSs). The residue fluorescence of BP also allows the cellular uptake of the particles to be visualized. This work provides a universal and convenient strategy to realize theranostic PACT in the ideal phototherapeutic window of 650–900 nm.  相似文献   
40.
Wu  Xuze  Sun  Yu  Wang  Yu  Chen  Yu 《Nonlinear dynamics》2020,99(3):1937-1958
Nonlinear Dynamics - Oblique collisions are more likely to happen in the realistic translational joint with clearance, compared to the full front impacts. It can be a quite demanding task to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号